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The preparation of 2�,3�-epimino-carbocyclic analogues of
adenosine is reported. The reaction of p-tosyl azide with N-
substituted 2-azabicyclo[2.2.1]hept-5-en-3-one (ABH) (1a)
provided aziridine-fused ABH (2), which was converted to
2�,3�-epimino-carbocyclic nucleosides (11).

Among recent efforts addressed at developing potent antiviral
nucleosides,1 understanding the role of conformationally con-
strained sugar rings built on a bicyclo[3.1.0]hexane template
has been the subject of a wealth of systematic studies, wherein
a number of methano- and epoxy-nucleoside derivatives have
been reported.2 Nevertheless, no attention has been denoted
to 2�,3�-methano-carbocyclic nucleosides, prompting us to
investigate the preparation and biological activities of 2�,3�-

methano-carbocyclic nucleosides as a promising category of
2�,3�-dideoxynucleosides that have been employed as potent
chemotherapeutic agents.3 Thus, we have previously reported
the first preparation of 2�,3�-methano-carbocyclic analogues of
adenosine,4 whose key reaction features included 1,3-dipolar or
palladium-catalyzed [2�1] cycloaddition of diazomethane to
N-substituted 2-azabicylo[2.2.1]hept-5-en-3-ones (ABH) (1),
followed by the conversion to bicyclo[3.1.0]hexane template.

In due course, we have also become interested in the
preparation and testing of the biological activities of 2�,3�-
epimino-carbocyclic nucleosides. To our knowledge, no
epimino-carbocyclic nucleosides have been prepared, and there
are only a few antecedents to epimino-nucleosides in the
literature.5
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In our synthetic scheme, it was envisaged that 6-
azabicyclo[3.1.0]hexane is a possible intermediate for the
construction of 2�,3�-epimino-carbocyclic nucleosides. Thus,
we have previously disclosed the formation of 6-azabicyclo-
[3.1.0]hexane based on the use of high-pressure promoted
1,3-dipolar cycloaddition of azides [(PhO)2P(O)N3, EtO2CN3,
PhN3] to 1, followed by photolysis of the resulting triazolines.6

Alternatively, the reaction of TsN3 with 1a under thermal con-
ditions was found to enable the concise formation of aziridine-
fused ABH (2). Herein, we describe the first preparation of
2�,3�-epimino-carbocyclic nucleosides (11) via 7 which is readily
available from 2 (Scheme 1).

Since acyl azides are known to be the most prominent acyl
nitrene precursors, nitrene-addition to the double bond of 1a
was first attempted by heating with azides [(PhO)2P(O)N3,
EtO2CN3] at 110 �C in toluene.7 However, only a slight amount
of aziridine-fused ABH was obtained. On the other hand,
similarly heating TsN3 with 1a in toluene at 110 �C for 2 h
readily produced aziridine-fused ABH (2) as crystals in 68%
yield, along with the formation of triazolines (3) (3a in 6%, 3b
in 2%) as minor products. Although the previous photolysis of
triazolines provided aziridine-fused ABHs in acceptable yields,6

an attempted conversion of 3 to 2 by photolysis with a high-
pressure mercuric lamp afforded a complex mixture. On the
other hand, 3 was recovered unaltered even after heating in
toluene at 110 �C for 1 h.

Next, the conversion of 2 to the aimed 2�,3�-epimino-
carbocyclic nucleoside (11) was undertaken, during which
the aziridine ring was successfully shown to be stable.
Reductive cleavage of the amide bond (N–CO) of 2 with
NaBH4 in MeOH smoothly provided 6-azabicyclo[3.1.0]hexane
(4) in 74% yield. Subjection of amine 5, derived from 4 by
removal of the N-Cbz group, to the reaction with 5-amino-4,6-
dichloropyrimidine in n-BuOH at 140 �C gave complex
mixtures, probably due to the undesirable nucleophilic attack
of the unprotected hydroxy group on the aziridine ring.
Alternatively, 4 was converted to acetate 6, and the N-Cbz
group in 6 was removed by catalytic hydrogenation, generating
7. Without purification, 7 was submitted to a reaction with
5-amino-4,6-dichloropyrimidine in n-BuOH at 140 �C for
2 days, leading to pyrimidine 8 in 30% yield based on 6. A
longer reaction time (7 days) was required to enable the conver-
sion of 8 to purine 9 in 60% yield by treatment with ortho-
ethyl formate in the presence of HCl at room temperature. A
reduction in time (2 days) was rendered by heating 8 with
orthoethyl formate in the presence of HCl at 50 �C to give rise
to 9 in 62% yield, in which the aziridine ring withstood even the
increased reaction temperature. Then, heating 9 with amines 10
in MeOH at 50 �C provided 2�,3�-epimino-carbocyclic nucleo-
sides (11).8

In summary, the first synthesis of 2�,3�-epimino-carbocyclic
analogues of adenosine (11) was attained through the [2 � 1]
cycloaddition reaction of nitrene generated from TsN3 to
ABH (1a). The resulting 2, having an N-Ts-aziridine ring, was
readily converted to 2�,3�-epimino-carbocyclic nucleosides (11)
through a series of chemical transformations. Removal of the
Ts group in 11 is under investigation, and will be reported in
due course.
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